

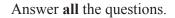
Cambridge IGCSE[™]

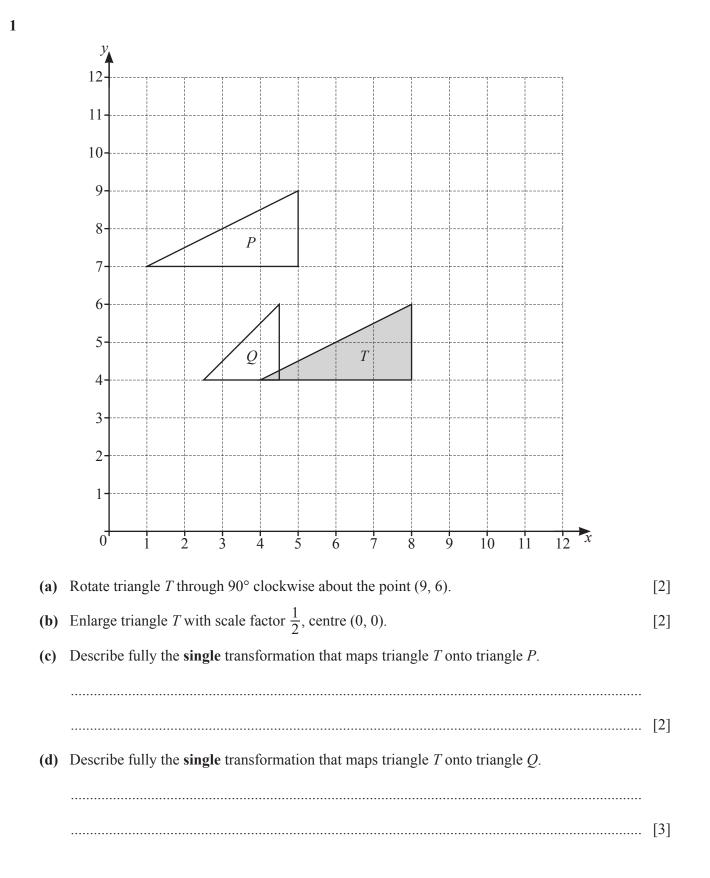
CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
CAMBRIDGE	INTERNATIONAL MATHEMATICS		0607/43	
Paper 4 (Extend	ded)	October/November 2022		
			2 hours 15 minutes	
You must answe	er on the question paper.			
You will pood:	Coometrical instrumente			

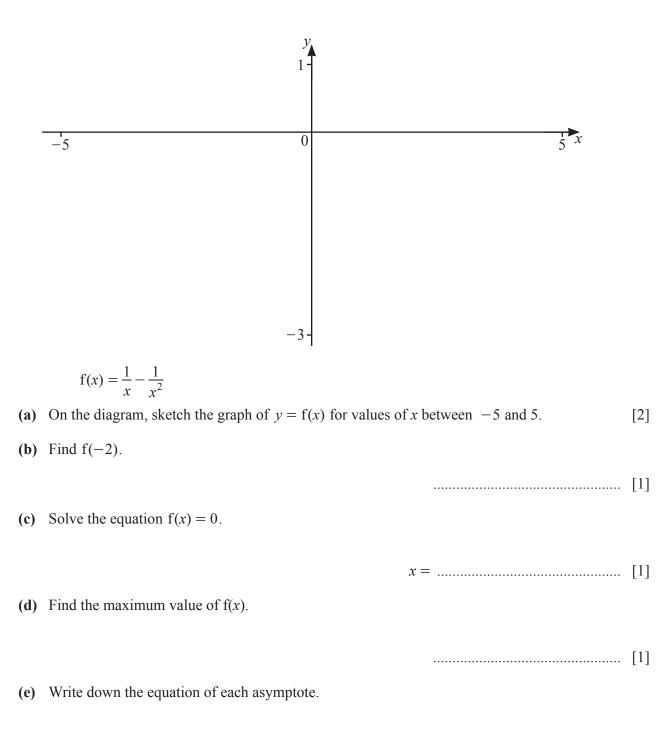
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper. •
- You must show all necessary working clearly and you will be given marks for correct methods, including sketches, even if your answer is incorrect.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in • degrees, unless a different level of accuracy is specified in the question.
- For π , use your calculator value. •


INFORMATION


- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].


This document has 20 pages. Any blank pages are indicated.

Formula List

For the equation	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Curved surface area, A, of c	ylinder of radius <i>r</i> , height <i>h</i> .	$A = 2\pi rh$
Curved surface area, A, of co	one of radius <i>r</i> , sloping edge <i>l</i> .	$A = \pi r l$
Curved surface area, A , of sp	bhere of radius <i>r</i> .	$A = 4\pi r^2$
Volume, <i>V</i> , of pyramid, base	e area A , height h .	$V = \frac{1}{3}Ah$
Volume, V , of cylinder of ra	dius r, height h.	$V = \pi r^2 h$
Volume, V, of cone of radius	s r, height h.	$V = \frac{1}{3}\pi r^2 h$
Volume, <i>V</i> , of sphere of radi	us <i>r</i> .	$V = \frac{4}{3}\pi r^3$
\bigwedge^A		$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
c b		$a^2 = b^2 + c^2 - 2bc\cos A$
		Area $=\frac{1}{2}bc\sin A$
B a	`C	

4

(f) (i) Solve the equation.

$$\frac{1}{x} - \frac{1}{x^2} = x^2 - 2$$

-[3]
- (ii) The equation $\frac{1}{x} \frac{1}{x^2} = x^2 2$ can be rearranged to the form $x^4 + ax^2 + bx + c = 0$. Find the values of *a*, *b* and *c*.

<i>a</i> =	
<i>b</i> =	
<i>c</i> =	 [2]

3 (a) Amira buys a magazine that costs n and a book that costs (2n + 5). She pays with a \$20 note and receives \$1.62 change.

Find the cost of a magazine.

\$[3]

(b) The cost of a bar of chocolate is x and the cost of a bag of sweets is y.

Bruce buys 2 bars of chocolate and 1 bag of sweets for a total of \$3.60. Charlie buys 3 bars of chocolate and 2 bags of sweets for a total of \$6.05.

Find the total cost of 1 bar of chocolate and 3 bags of sweets. You must show all your working.

Sequence	1st term	2nd term	3rd term	4th term	5th term	<i>n</i> th term
А	3	5	7	9		
В	1	8	27	64		
С	$\frac{1}{4}$	$\frac{1}{2}$	1	2		
D	0	2	6	12		

4 Complete the table for the 5th term and the *n*th term of each sequence.

[11]

- 5 (a) Kris and Laila share \$200 in the ratio 2 : 3.
 - (i) Show that Kris receives \$80.

(ii) Kris spends 30.8% of his \$80 on a book.

Calculate the cost of the book.

[1]

(iii) Laila invests her \$120 at a rate of 1.16% per year simple interest.Calculate the total amount Laila has at the end of 5 years.

- (b) On 1 January 2020, Sangita invests an amount of money at a rate of 2% per year compound interest. On 1 January 2023 the value of the investment is \$5306.04.
 - (i) Calculate the amount Sangita invested on 1 January 2020.

(ii) Calculate the value of the investment on 1 January 2025.

(c) Tomas invests an amount of money at a rate of 1.4% per year compound interest.Find the number of complete years it takes for the value of his investment to increase by 50%.

......[4]

6 (a)
$$\mathbf{p} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 $\mathbf{r} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$
(i) Find 2**p**.

(ii) Find $\frac{1}{4}$ **p**-**r**.

(iii) Find the magnitude of **p**.

(b) K is the point (3, 4).

- (i) The vector from K to L is $\begin{pmatrix} -1\\ 1 \end{pmatrix}$. Find the coordinates of L.
- (ii) The vector from J to K is $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$. Find the coordinates of J.

(.....) [1]

(.....) [1]

[1]

[2]

(c) A is the point (-1, 3) and B is the point (5, 7). The perpendicular bisector of the line AB meets the x-axis at C.

Find the coordinates of *C*.

(.....) [7]

Time, <i>t</i> hours	$0 < t \le 10$	$10 < t \le 20$	$20 < t \le 25$	$25 < t \le 30$	$30 < t \le 60$
Frequency	3	11	42	40	4

7 (a) The time, t hours, spent watching television in one week by each of 100 students is shown in the table.

(i) A pie chart is drawn to show the results.

Calculate the sector angle for the number of students who spend more than 30 hours watching television.

......[2]

(ii) Calculate an estimate of the mean.

..... h [2]

(b) A shopkeeper records the midday temperature, $t \,^{\circ}$ C, and the number of ice creams, *n*, sold each day in one week. The table shows the results

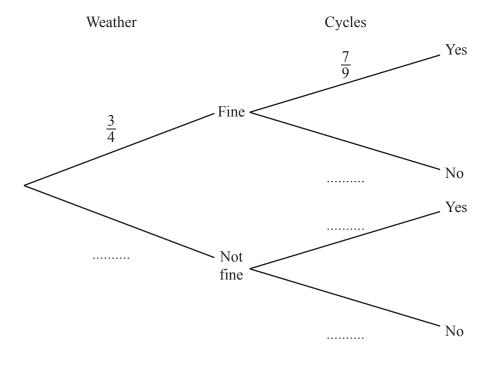
The	table	shows	the	results.

Midday temperature, t °C	20	24	20	17	18	20	25
Number of ice creams, <i>n</i>	103	106	95	91	93	98	114

(i) Write down the type of correlation shown in the table.

......[1]

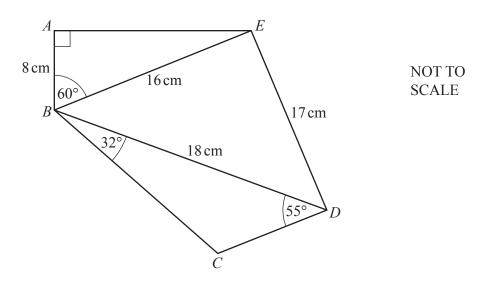
(ii) Find the equation of the regression line, giving *n* in terms of *t*.


(iii) Use your answer to **part(b)(ii)** to find the number of ice creams expected to be sold when the midday temperature is 22 °C.

(iv) During this week, the shopkeeper sells 700 ice creams.She estimates that she will sell a total of 9800 ice creams during the next 14 weeks.

Give a reason why this may not be a good estimate.

- (c) When the weather is fine, the probability that Lance goes cycling is $\frac{7}{9}$. When the weather is not fine, the probability that Lance goes cycling is $\frac{1}{5}$. The probability that the weather is fine is $\frac{3}{4}$.


 - (i) Complete the tree diagram.

(ii) Find the probability that Lance goes cycling.

......[3]

14

The diagram shows a pentagon ABCDE and diagonals BD and BE.

(a) (i) Calculate angle *BCD*.

(ii) Calculate *BC*.

BC = cm [3]

(b) Calculate angle *EBD*.

(c) Calculate the area of the pentagon *ABCDE*.

..... cm² [4]

(d) Calculate the shortest distance from *C* to *AE*.

..... cm [4]

9	(a)	$\mathbf{f}(x) = 2x + 3$	$g(x) = x^2 + 1$	$h(x) = 2\sin(2x)$
	(i)	Find $f(-2)$.		
	(ii)	Find $f^{-1}(x)$.		[1]

$$f^{-1}(x) = \dots [2]$$

(iii) Find x when g(x) = 2 f(x).

 $x = \dots$ or $x = \dots$ [3]

(iv) Find g(f(x)), giving your answer in the form $ax^2 + bx + c$.

.....[3]

(v) Find the amplitude and period of h(x).

Amplitude =

(vi) Solve the equation $h(x) = \sqrt{3}$ for $0^{\circ} \le x \le 180^{\circ}$.

.....[2]

(b) $j(x) = \log_a x, \ x > 0$

(i) Find the value of $j(\sqrt[3]{a})$.

......[1]

(ii) Find $j^{-1}(x)$.

 $j^{-1}(x) =$ [2]

10 (a) A machine lays a pipe of length 2.5 km in 18 hours. The machine always works at the same rate.

Calculate the time it takes to lay a pipe of length 4 km.

...... hours [2]

(b) t varies inversely as the square root of x.x varies directly as the square of y.

When x = 4, t = 3. When y = 4, x = 81.

ty = h

Find the value of *h*.

 $h = \dots$ [5]