

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

5 1 6 1 6 6 1 3 9 2

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/22

Paper 2 (Extended)

October/November 2022

45 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly and you will be given marks for correct methods even if your answer is incorrect.
- All answers should be given in their simplest form.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].

This document has 8 pages. Any blank pages are indicated.

Formula List

For the equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Curved surface area, A, of cylinder of radius r, height h.

 $A = 2\pi rh$

Curved surface area, A, of cone of radius r, sloping edge l.

 $A = \pi r l$

Curved surface area, A, of sphere of radius r.

 $A = 4\pi r^2$

Volume, V, of pyramid, base area A, height h.

 $V = \frac{1}{3}Ah$

Volume, V, of cylinder of radius r, height h.

 $V = \pi r^2 h$

Volume, V, of cone of radius r, height h.

 $V = \frac{1}{3}\pi r^2 h$

Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Area = \frac{1}{2}bc \sin A$$

Answer all the questions.

|--|

7 15 9 4 16 6 8 11 12 10

Find

(a) the median,

.....[2]

(b) the mean.

.....[2]

2 A regular polygon has 24 sides.

Find the size of each interior angle of the polygon.

.....[3]

 $P = 2a + b^2 - 3c$

Find P when a = 5, b = -4 and c = -3.

 $P = \dots [2]$

4	You	are given th	$\sqrt{7} = 2.65 \text{ a}$	and $\sqrt{70}$	= 8.37,	each cor	rect to 2	decimal p	laces.	
	Use	this informa	ation to find the v	alue of						
	(a)	$\sqrt{700}$,								
										[1]
	(b)	$\sqrt{280}$.								
										[1]
							•••••	•••••		[1]
5			d spinner is spun							
	The	results are s	shown in the table				I			
			Number	1	2	3	4	5		
			Frequency	24	48	63	38	27		
	(a)	Find the rel	lative frequency of	of the spin	ner landin	g on 2.				
								•••••		[1]
	(b)	The spinner	r is spun 1000 tin	nes.						
		Find the ex	pected number of	f times tha	t the spin	ner lands	on 2.			
										[1]
6	Solv	2x+6 >	5x - 10.							
										[2]

7	Describe fully the inverse of each transformation. (a) Translation by $\binom{-2}{5}$.	
	(b) Enlargement with centre (2, 3) and scale factor 2.	[2]
		[2]
8	Find the value of $125^{-\frac{1}{3}}$.	
		[1]
9	y is inversely proportional to x^3 . When $x = 5$, $y = 2$. Find y when $x = 10$.	

$$y =$$
 [3]

10

Find the value of x.

$$x = \dots [3]$$

11 Simplify.

$$\frac{ax^2 + 5ax + bx + 5b}{x^2 - 25}$$

12 f(x) = 11x + 2 $g(x) = \sin x^{\circ}$

(a) Find $f^{-1}(x)$.

$$f^{-1}(x) = \dots [2]$$

(b) Find g(f(8)).

.....[2]

13

A, B, C and D are points on the circle. PQ is a tangent to the circle at D. Angle $BDQ = 55^{\circ}$.

Complete these statements giving a reason for each answer.

(a)	Angle $BAD = \dots$ because	
		[2]
(b)	Angle $BCD =$ because	
		[2]

 $4\log y + 3\log x = 2$

Find y in terms of x.

.....[3]