

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0296149060

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/23

Paper 2 (Extended)

October/November 2021

45 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly and you will be given marks for correct methods even if your answer is incorrect.
- All answers should be given in their simplest form.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].

This document has 8 pages. Any blank pages are indicated.

Formula List

For the equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Curved surface area, A, of cylinder of radius r, height h.

 $A = 2\pi rh$

Curved surface area, A, of cone of radius r, sloping edge l.

 $A = \pi r l$

Curved surface area, A, of sphere of radius r.

 $A = 4\pi r^2$

Volume, V, of pyramid, base area A, height h.

 $V = \frac{1}{3}Ah$

Volume, V, of cylinder of radius r, height h.

 $V = \pi r^2 h$

Volume, V, of cone of radius r, height h.

 $V = \frac{1}{3}\pi r^2 h$

Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Area = \frac{1}{2}bc \sin A$$

Answer all the questions.

(a)
$$(-2)+(-3)-(-4)$$

.....[1]

(b)
$$(-2) \times (-3) \times (-4)$$

.....[1]

From this list write down a prime number.

.....[1]

3 \$126 is divided into 3 shares in the ratio 1:2:4.

Find the value of the largest share.

\$.....[2]

4 Solve.

(a)
$$5-2x=0$$

$$x = \dots$$
 [1]

(b)
$$-12 + 2x = 5x - 3$$

$$x = \dots$$
 [2]

5 There are 640 students in a school.

The table shows the favourite colour of each of the students.

Favourite colour	Blue	Green	Red	Yellow
Number of students	120	2x	280	x

(4)	(a)	Find the value	of x.
-----	-----	----------------	-------

x =	 [2]

(b) Find the relative frequency of students whose favourite colour is red. Give your answer as a fraction in its lowest terms.

	[2]
--	-----

6 (a) Simplify.

$$\sqrt{75} - \sqrt{27}$$

(b) Rationalise the denominator and simplify your answer.

$$\frac{10}{5-\sqrt{5}}$$

7	A is	the point $(3, 7)$ and B is the point $(9, -1)$.	
	Cal	culate the length AB .	
		$AB = \dots$	[3]
8	(a)	A regular polygon has 12 sides.	
	` /	Work out the sum of the interior angles of the polygon.	
		F. 78.	
			[2]
	(b)	The interior angle of a regular polygon is x° .	
		Find an expression, in terms of x , for the number of sides of this polygon.	
			[2]

9	Expand the brackets and simplif	y.		
10	Solve the simultaneous equation You must show all your working			[2]
11	$f(x) = \frac{1}{2x-5}$, (a) Find f(2).	$x \neq 2.5$	<i>x</i> =	[4]
	(b) Solve $f(x) = 5$.			[1]
				[2]

12
$$\frac{2x-3}{2x+3} - \frac{2x+3}{2x-3} = \frac{ax}{bx^2 - c}$$

Find the values of a, b and c.

$$a = \dots$$

$$b = \dots$$

$$c = \dots$$
[4]

13 A bag contains 12 discs.

There are 2 red discs, 4 blue discs, 5 green discs and 1 yellow disc.

A disc is chosen at random and not replaced.

A second disc is then chosen at random.

Find the probability that both discs are the same colour.

.....[3]