

# Cambridge IGCSE<sup>™</sup>

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

# 8 1 4 0 9 9 6 7 1 9

### **CAMBRIDGE INTERNATIONAL MATHEMATICS**

0607/63

Paper 6 Investigation and Modelling (Extended)

October/November 2020

1 hour 40 minutes

You must answer on the question paper.

No additional materials are needed.

#### **INSTRUCTIONS**

- Answer both part A (Questions 1 to 4) and part B (Questions 5 to 8).
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly, including sketches, to gain full marks for correct methods.
- In this paper you will be awarded marks for providing full reasons, examples and steps in your working to communicate your mathematics clearly and precisely.

#### **INFORMATION**

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Blank pages are indicated.

#### Answer both parts A and B.

# A INVESTIGATION (QUESTIONS 1 TO 4)

# AREAS OF POLYGONS INSIDE AND OUTSIDE A CIRCLE (30 marks)

You are advised to spend no more than 50 minutes on this part.

This investigation looks at the areas of polygons drawn inside and outside a circle of radius 10 cm.

An inscribed polygon is a polygon in which all the vertices lie on a circle. This is an inscribed square.



A circumscribed polygon is a polygon in which each side is a tangent to a circle. This is a circumscribed square.



You may find some of these formulas useful.

Area, A, of circle, radius r

$$A = \pi r^2$$

Area, A, of triangle, base b, height h

$$A = \frac{1}{2}bh$$

In a right-angled triangle,

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}},$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}},$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}.$$

1 (a)



NOT TO SCALE

A square circumscribes a circle, centre O, radius  $10\,\mathrm{cm}$ .

Work out the area of the square.

|  | 1 |  |  |  |
|--|---|--|--|--|
|--|---|--|--|--|

**(b)** 



A square is inscribed in a circle, centre O, radius 10 cm.

Work out the area of the square.

| [2 |
|----|
|----|

(c) Show that the area of a circle, radius  $10 \, \text{cm}$ , is  $100 \pi \, \text{cm}^2$ .

[1]

(d) Area of inscribed square < Area of circle < Area of circumscribed square

Use this statement to complete the inequality below.

..... 
$$< \pi <$$
 ...... [1]

2 (a)



A regular hexagon is inscribed in a circle, centre O, radius  $10\,\mathrm{cm}$ .

Find the area of the hexagon.

| [3 |  |  |  | [3] |
|----|--|--|--|-----|
|----|--|--|--|-----|

(b) (i)



An equilateral triangle has height 10 cm.

Find the area of the triangle.



A regular hexagon circumscribes a circle, centre O, radius 10 cm.

Using your answer to **part** (i), find the area of the hexagon.

.....[2]

(c) (i) Use Question 1(c), Question 2(a) and Question 2(b)(ii) to complete the inequality.

|      | < π <                                                                                                                                               | [1]   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| (ii) | Give a geometric reason why the range in the inequality in <b>Question 2(c)(i)</b> is smaller the range in the inequality in <b>Question 1(d)</b> . | than  |
|      |                                                                                                                                                     |       |
|      |                                                                                                                                                     | . [1] |

3 (a)



A regular 12-sided polygon is inscribed in a circle, centre O, radius 10 cm.

Find the area of this polygon.

......[2]

(b)



A regular 12-sided polygon circumscribes a circle, centre O, radius 10 cm.

Find the area of this polygon.

(c) Use the answers to part (a) and part (b) to complete the inequality.

$$\pi < \pi$$
 [1]

4 (a) (i) Show that a formula for the area,  $A \text{ cm}^2$ , of a regular polygon with n sides **inscribed** in a circle, radius 10 cm, is

$$A = 50n \sin\left(\frac{360}{n}\right)^{\circ}.$$

[2]

(ii) Show that a formula for the area,  $B \text{ cm}^2$ , of a regular polygon with n sides that **circumscribes** a circle, radius 10 cm, is

$$B = 100n \tan\left(\frac{180}{n}\right)^{\circ}.$$

[2]

| (b) | (i)         | Work out the area of a regular polygon with 100 sides that is <b>inscribed</b> in a circle, radius 10 cm. Give your answer correct to 4 significant figures. |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (ii)        | Work out the area of a regular polygon with 100 sides that <b>circumscribes</b> a circle, radius 10 cm.  Give your answer correct to 4 significant figures.  |
| (c) | Use<br>figu | your answers to <b>part (b)</b> to explain how you can find the value of $\pi$ correct to 3 significant res.                                                 |
|     |             | [1]                                                                                                                                                          |

# B MODELLING (QUESTIONS 5 TO 8)

# **MODELLING CONTAINERS** (30 marks)

You are advised to spend no more than 50 minutes on this part.

Olivia wants to design a closed container with a volume of 1000 cm<sup>3</sup> and minimum surface area.

5 Olivia uses a square-based cuboid to model the container.



|  | (a) | (i) | Write down a | a formula f | for the volur | ne of the cubo | oid, $V \text{cm}^3$ . | in terms of x and | d <i>h</i> |
|--|-----|-----|--------------|-------------|---------------|----------------|------------------------|-------------------|------------|
|--|-----|-----|--------------|-------------|---------------|----------------|------------------------|-------------------|------------|

|  | [1] |
|--|-----|
|--|-----|

(ii) Find a formula for the surface area,  $S \text{ cm}^2$ , of the cuboid, in terms of x and h. Give your answer in its simplest form.

**(b) (i)** V = 1000.

Write h in terms of x.

(ii) Show that  $S = 2x^2 + \frac{4000}{x}$ .

[1]

(iii) Work out the value of S when x = 25.

.....[1]

(c) Sketch the graph of  $S = 2x^2 + \frac{4000}{x}$  for  $0 < x \le 25$ .



(d) (i) Find the minimum surface area of the cuboid.

.....[1]

[3]

(ii) Describe the container that gives the minimum surface area for Olivia's model.

.....

6

Volume, V, of a cylinder of radius r, height h  $V = \pi r^2 h$  Curved surface area, A, of a cylinder of radius r, height h  $A = 2\pi rh$ 

Olivia now uses a cylinder to model the container.



The total surface area of this model is  $T \text{cm}^2$ .

(a) 
$$V = 1000$$
.

Show that 
$$T = 2\pi r^2 + \frac{2000}{r}$$
.

**(b) (i)** Find the minimum surface area of the cylinder.

.....[2]

[3]

| (ii) Find the dimensions of the cylinder with the minimum surface area |  |
|------------------------------------------------------------------------|--|
|------------------------------------------------------------------------|--|

| r = |         |
|-----|---------|
| ı = | <br>[2] |

7

Volume, V, of a pyramid, base area A, height h  $V = \frac{1}{3}Ah$ 

Olivia now uses a square-based pyramid to model the container.



The pyramid, OABCD, has a square base of side x cm and height h cm. The vertex of the pyramid, O, is directly above the centre of the square base. E is the mid-point of BC.

(a) Find an expression for OE in terms of h and x.

.....[2]

**(b)** The total surface area of this model is  $P \text{ cm}^2$ .

$$V = 1000$$
.

Show that 
$$P = x^2 + \frac{\sqrt{x^6 + 360000000}}{x}$$
.

[4]

| (c) | (i)     | Find the minimum surface area of the pyramid.                     |
|-----|---------|-------------------------------------------------------------------|
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         | [2]                                                               |
|     | <b></b> |                                                                   |
|     | (ii)    | Find the dimensions of the pyramid with the minimum surface area. |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         | $x = \dots$                                                       |
|     |         |                                                                   |
|     |         | $h = \dots [2]$                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |
|     |         |                                                                   |

| 8 | Olivia recommends the container with the smallest surface area to a company.      |     |
|---|-----------------------------------------------------------------------------------|-----|
|   | Give a geometric reason why the company might not accept Olivia's recommendation. |     |
|   | Olivia recommends the                                                             |     |
|   | Geometric reason                                                                  |     |
|   |                                                                                   | Г17 |