Cambridge IGCSE ${ }^{\text {TM }}$

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/63
Paper 6 Investigation and Modelling (Extended)

You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer both part A (Questions 1 to 4) and part B (Questions 5 to 8).
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly, including sketches, to gain full marks for correct methods.
- In this paper you will be awarded marks for providing full reasons, examples and steps in your working to communicate your mathematics clearly and precisely.

INFORMATION

- The total mark for this paper is 60 .
- The number of marks for each question or part question is shown in brackets [].

A INVESTIGATION (QUESTIONS 1 TO 4)

AREAS OF POLYGONS INSIDE AND OUTSIDE A CIRCLE (30 marks)

You are advised to spend no more than 50 minutes on this part.
This investigation looks at the areas of polygons drawn inside and outside a circle of radius 10 cm .
An inscribed polygon is a polygon in which all the vertices lie on a circle.
This is an inscribed square.

A circumscribed polygon is a polygon in which each side is a tangent to a circle. This is a circumscribed square.

You may find some of these formulas useful.
Area, A, of circle, radius r

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=\frac{1}{2} b h
\end{aligned}
$$

Area, A, of triangle, base b, height h
In a right-angled triangle,

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}, \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}, \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }} .
\end{aligned}
$$

1 (a)

NOT TO
SCALE

A square circumscribes a circle, centre O, radius 10 cm .
Work out the area of the square.
(b)

NOT TO
SCALE

A square is inscribed in a circle, centre O, radius 10 cm .
Work out the area of the square.
(c) Show that the area of a circle, radius 10 cm , is $100 \pi \mathrm{~cm}^{2}$.
(d) Area of inscribed square $<$ Area of circle $<$ Area of circumscribed square Use this statement to complete the inequality below.
\qquad

2 (a)

NOT TO
SCALE

A regular hexagon is inscribed in a circle, centre O, radius 10 cm .
Find the area of the hexagon.
(b) (i)

NOT TO
SCALE

An equilateral triangle has height 10 cm .
Find the area of the triangle.
(ii)

NOT TO
SCALE

A regular hexagon circumscribes a circle, centre O, radius 10 cm .
Using your answer to part (i), find the area of the hexagon.
(c) (i) Use Question 1(c), Question 2(a) and Question 2(b)(ii) to complete the inequality.
\qquad[1]
(ii) Give a geometric reason why the range in the inequality in Question 2(c)(i) is smaller than the range in the inequality in Question 1(d).
\qquad
\qquad

3 (a)

NOT TO
SCALE

A regular 12-sided polygon is inscribed in a circle, centre O, radius 10 cm .
Find the area of this polygon.
(b)

NOT TO
SCALE

A regular 12-sided polygon circumscribes a circle, centre O, radius 10 cm .
Find the area of this polygon.
(c) Use the answers to part (a) and part (b) to complete the inequality.
\qquad $<\pi<$

4 (a) (i) Show that a formula for the area, $A \mathrm{~cm}^{2}$, of a regular polygon with n sides inscribed in a circle, radius 10 cm , is

$$
A=50 n \sin \left(\frac{360}{n}\right)^{\circ}
$$

(ii) Show that a formula for the area, $B \mathrm{~cm}^{2}$, of a regular polygon with n sides that circumscribes a circle, radius 10 cm , is

$$
B=100 n \tan \left(\frac{180}{n}\right)^{\circ} .
$$

(b) (i) Work out the area of a regular polygon with 100 sides that is inscribed in a circle, radius 10 cm . Give your answer correct to 4 significant figures.
(ii) Work out the area of a regular polygon with 100 sides that circumscribes a circle, radius 10 cm .
Give your answer correct to 4 significant figures.
(c) Use your answers to part (b) to explain how you can find the value of π correct to 3 significant figures.
\qquad
\qquad

B MODELLING (QUESTIONS 5 TO 8)

MODELLING CONTAINERS (30 marks)

You are advised to spend no more than 50 minutes on this part.

Olivia wants to design a closed container with a volume of $1000 \mathrm{~cm}^{3}$ and minimum surface area.
5 Olivia uses a square-based cuboid to model the container.

NOT TO
SCALE
(a) (i) Write down a formula for the volume of the cuboid, $V \mathrm{~cm}^{3}$, in terms of x and h.
(ii) Find a formula for the surface area, $S \mathrm{~cm}^{2}$, of the cuboid, in terms of x and h. Give your answer in its simplest form.
(b) (i) $V=1000$.

Write h in terms of x.
\qquad
(ii) Show that $S=2 x^{2}+\frac{4000}{x}$.
(iii) Work out the value of S when $x=25$.
(c) Sketch the graph of $S=2 x^{2}+\frac{4000}{x}$ for $0<x \leqslant 25$.

(d) (i) Find the minimum surface area of the cuboid.
(ii) Describe the container that gives the minimum surface area for Olivia's model.
\qquad
\qquad

```
Volume, \(V\), of a cylinder of radius \(r\), height \(h\)
\(V=\pi r^{2} h\)
Curved surface area, \(A\), of a cylinder of radius \(r\), height \(h\) \(A=2 \pi r h\)
```

Olivia now uses a cylinder to model the container.

The total surface area of this model is $T \mathrm{~cm}^{2}$.
(a) $V=1000$.

Show that $T=2 \pi r^{2}+\frac{2000}{r}$.
(b) (i) Find the minimum surface area of the cylinder.
(ii) Find the dimensions of the cylinder with the minimum surface area.

$$
\begin{align*}
& r= \\
& h= \tag{2}
\end{align*}
$$

$$
V=\frac{1}{3} A h
$$

Olivia now uses a square-based pyramid to model the container.

NOT TO
SCALE

The pyramid, $O A B C D$, has a square base of side $x \mathrm{~cm}$ and height $h \mathrm{~cm}$.
The vertex of the pyramid, O, is directly above the centre of the square base.
E is the mid-point of $B C$.
(a) Find an expression for $O E$ in terms of h and x.
(b) The total surface area of this model is $P \mathrm{~cm}^{2}$.
$V=1000$.
Show that $P=x^{2}+\frac{\sqrt{x^{6}+36000000}}{x}$.
(c) (i) Find the minimum surface area of the pyramid.
(ii) Find the dimensions of the pyramid with the minimum surface area.

$$
\begin{aligned}
& x= \\
& h=
\end{aligned}
$$

8 Olivia recommends the container with the smallest surface area to a company.
Give a geometric reason why the company might not accept Olivia's recommendation.
Olivia recommends the \qquad
Geometric reason

