

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1 1 5 2 7 3 1 1 8 0

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43

Paper 4 (Extended) May/June 2022

2 hours 15 minutes

You must answer on the question paper.

You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly and you will be given marks for correct methods, including sketches, even if your answer is incorrect.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use your calculator value.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Formula List

For the equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Curved surface area, A, of cylinder of radius r, height h.

$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l.

$$A = \pi r l$$

Curved surface area, A, of sphere of radius r.

$$A = 4\pi r^2$$

Volume, V, of pyramid, base area A, height h.

$$V = \frac{1}{3}Ah$$

Volume, V, of cylinder of radius r, height h.

$$V = \pi r^2 h$$

Volume, V, of cone of radius r, height h.

$$V = \frac{1}{3}\pi r^2 h$$

Volume, V, of sphere of radius r.

$$V = \frac{4}{3}\pi r^3$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

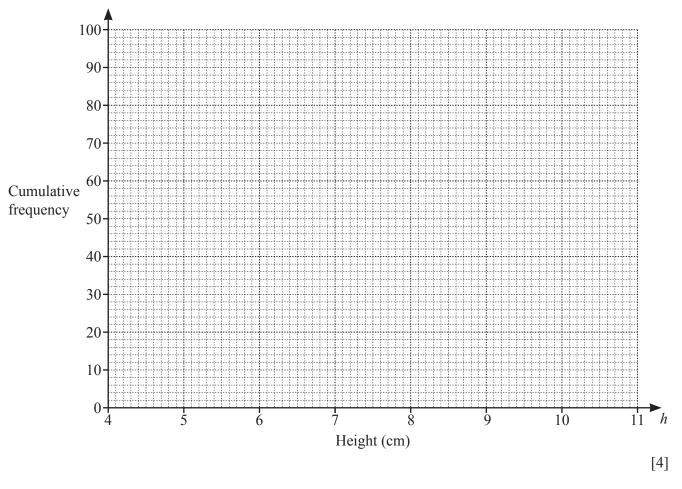
$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$Area = \frac{1}{2}bc\sin A$$

Answer all the questions.

1	(a)	Anneka invests \$2500 in an account paying compound interest at a rate of 1.6% per year.	
		Find the amount in the account at the end of 3 years.	
		\$	[2]
	(b)	Bashir invests \$2500 in an account paying simple interest at a rate of $r\%$ per year. At the end of 5 years the amount in the account is \$2718.75.	
		Calculate the value of r .	
		$r = \dots$	[3]
	(c)	Chanda invests \$2500 in an account paying compound interest at a rate of 1.55% per year.	
		Find the number of complete years until Chanda's investment is first worth more than \$4000.	
			[4]

2 The heights, $h \, \text{cm}$, of 100 seedlings are shown in the table.


<i>h</i> cm	Frequency
$4.5 < h \le 5.5$	9
$5.5 < h \le 6.5$	18
$6.5 < h \le 7.5$	27
$7.5 < h \le 8.5$	19
$8.5 < h \le 9.5$	16
$9.5 < h \le 10.5$	11
Total	100

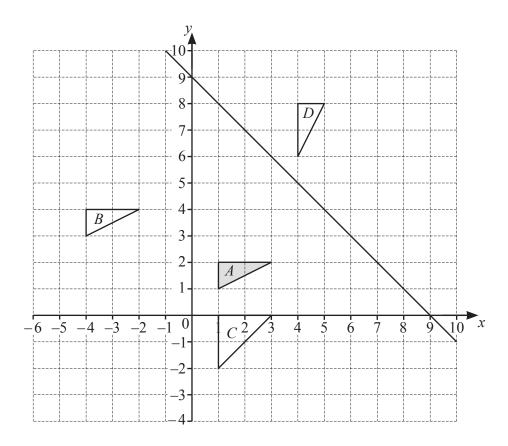
cn	[2]
----	-----

(b) Write down the modal group.

.....
$$< h \le$$
 [1]

(c) (i) Draw a cumulative frequency curve for the heights of the seedlings.

(ii) Use your curve to estimate the median.


..... cm [1]

(iii) Use your curve to estimate the interquartile range.

..... cm [2]

(iv) Find an estimate of the percentage of the seedlings that were more than 8 cm in height.

.....% [2]

The diagram shows triangles A, B, C and D and the line with equation x+y=9.

(2	a) Enlarge triangle A with centre $(4, 3)$ and scale factor 3 .	[2	<u>'</u>]

(b) Describe fully the **single** transformation that maps triangle A onto

(i)	triangle B ,	
(ii)	triangle C .	[2]
		[3]

(c) Triangle A can be mapped onto triangle D by a rotation of 90° clockwise about a point on the line x+y=9 followed by a reflection.

Find one possible centre of rotation and the equation of the corresponding mirror line.

Centre	(,)
--------	---	----------	---

4	(a)	Solve	4x - 3	= 7.

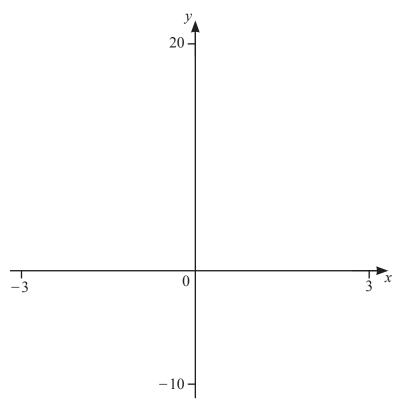
	F 0
x =	 12

(b)
$$y = \frac{3x+1}{z}$$

Find the value of y when x = 4.3 and z = -2.

$$y =$$
 [2]

(c) Solve the simultaneous equations. You must show all your working.


$$4x - 3y = 14$$

$$3x + 5y = 25$$

$$x = \dots$$

$$y = \dots$$
 [4]

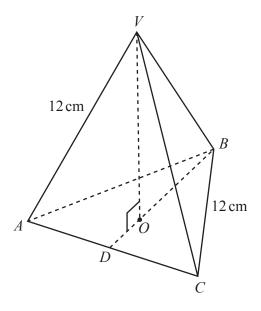
(d) Simplify
$$\frac{2x^2 + 4x}{5y^2} \div \frac{x^2 - 4}{10y}$$
.

$$f(x) = x^3 - 5x + 3 \text{ for } -3 \le x \le 3$$

- (a) On the diagram, sketch the graph of y = f(x). [2]
- **(b)** Find the coordinates of the local maximum.

(.....) [2]

(c) Describe fully the symmetry of the graph of y = f(x).


(d) Find the zeros of the graph of y = f(x).

.....[3]

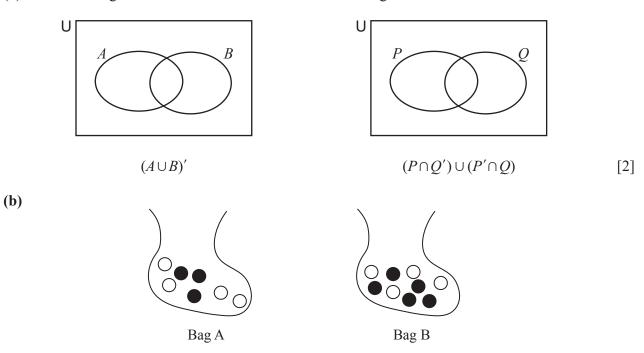
(i) On the same diagram, sketch the graph of y = g(x). [2]

(ii) Use your graphs to solve $x^3 - x^2 - 3x + 1 = 0$.

.....[3]

NOT TO SCALE

VABC is a pyramid with a triangular base. All the edges have length 12 cm. *O* is vertically below *V*. *D* is the mid-point of *AC* and $BO = \frac{2}{3}BD$.


(a) Show that $BO = 6.928 \,\mathrm{cm}$, correct to 3 decimal places.

[4]

(b) Calculate the volume of the pyramid.

..... cm³ [4]

7 (a) Shade the region indicated below each of these Venn diagrams.

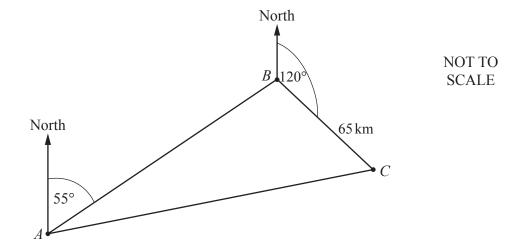
Bag A contains 4 white balls and 3 black balls. Bag B contains 4 white balls and 5 black balls.

A ball is taken at random from bag A. If the ball is white, it is replaced in Bag A. If the ball is black, it is put in bag B.

A ball is then taken at random from bag B.

Find the probability that

(i) the ball taken from bag A is white,


.....[1]

(ii) both balls are black,

.....[2]

(iii) the balls are different colours.

.....[3]

The diagram shows the route of a ship between three ports, A, B and C. The bearing of B from A is 055° and the bearing of C from B is 120° . BC = 65 km.

The ship takes 7 hours to sail from A to B. It sails at a speed of 20 km/h.

(a) Find the distance AB.

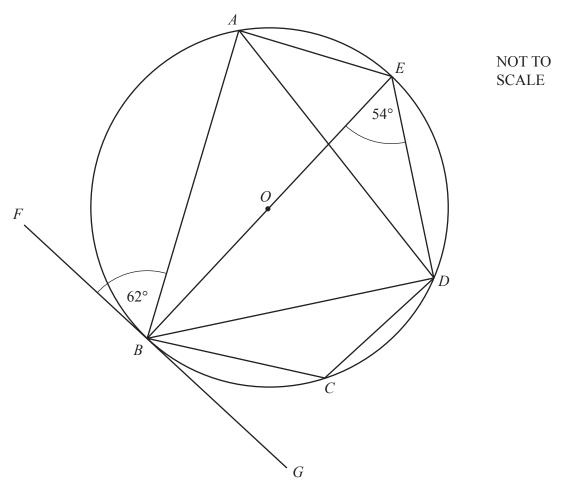
km	[1]
----	-----

(b) Show that angle $ABC = 115^{\circ}$.

[1]

(c) (i) Calculate the distance CA.

.....km [3]


	(ii)	Calculate the bearing of A from C .		
			·	. 41
	TT1		[[4]
(d)	The It th	e ship takes 3.6 hours to sail from B to C . hen sails from C to A at a speed of 21.5 km/h.		
	Fine	and the average speed for the complete journey from A to B to	C and back to A .	
			km/h [3]

9	f(x) = 2 - 3x	$g(x) = (x+1)^2$	$h(x) = \log x$
	(a) Find.		
	(i) f(-4)		
	(ii) f(g(3))		[1]
	(iii) $f^{-1}(4)$		[2]
	(iv) $h^{-1}(2)$		[2]
	(b) Solve $(f(x))^{-1} = 5$.		[2]

 $x = \dots$ [3]

(c)	Find $g(f(x))$. Write your answer in the form $ax^2 + bx + c$.		
		[3]	
(d)	y = h(f(x))		
	Find x in terms of y .		
	<i>x</i> =	[3]	

10 (a)

A, B, C, D and E are points on the circle centre O. FBG is a tangent to the circle at B. Angle $ABF = 62^{\circ}$ and angle $BED = 54^{\circ}$.

Find

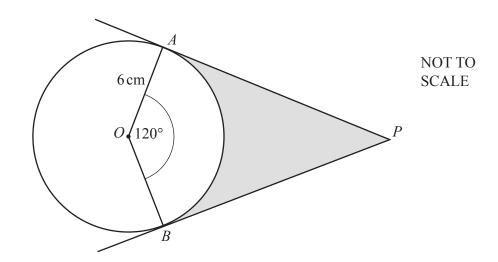
(i) angle AEB,

Angle
$$AEB = \dots$$
 [1]

(ii) angle BAD,

Angle
$$BAD = \dots$$
 [1]

(iii) angle EAD,


(iv) angle BCD,

Angle
$$BCD = \dots$$
 [1]

(v) angle FBD.

Angle
$$FBD = \dots$$
 [1]

(b)

PA and PB are tangents to the circle centre O. The radius of the circle is 6 cm and angle $AOB = 120^{\circ}$.

The shaded area = $(a\sqrt{3} - b\pi)$ cm².

Find the value of a and the value of b.

$$a = \dots$$

$$b = \dots$$
 [5]

11	A tank has a capacity of 400 litres.						
	Wat	Water from Tap A flows at x litres per minute. Water from Tap B flows at 2 litres per minute less than the water from tap A.					
	(a)	Write down an expression in terms of x for the time, in minutes, for tap A to fill the tank.					
		[1]					
	(b)	Tap B takes 10 minutes longer to fill the tank than tap A.					
	Write down an equation in terms of x and show that it simplifies to						
		$x^2 - 2x - 80 = 0.$					
		[4]					
	(c)	Solve $x^2 - 2x - 80 = 0$ and find the time it takes to fill the tank when both taps are turned on. Give your answer in minutes and seconds, correct to the nearest second.					
		minutes seconds [4]					