Cambridge IGCSE ${ }^{\text {TM }}$

CENTRE NUMBER

CANDIDATE NUMBER

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42
Paper 4 (Extended)
February/March 2023
2 hours 15 minutes

You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly and you will be given marks for correct methods, including sketches, even if your answer is incorrect.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π, use your calculator value.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].

Formula List

For the equation

$$
a x^{2}+b x+c=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Curved surface area, A, of cylinder of radius r, height h.
$A=2 \pi r h$

Curved surface area, A, of cone of radius r, sloping edge l.
$A=\pi r l$

Curved surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cylinder of radius r, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area $=\frac{1}{2} b c \sin A$

Answer all the questions.

1 The table shows the marks scored by each of 75 students in a test.

Mark	0	1	2	3	4	5	6	7	8	9	10
Number of students	1	4	5	6	9	10	11	7	6	13	3

(a) Write down the mode.
(b) Write down the range.
(c) Find the median.
(d) Find the lower quartile.
\qquad
(e) Calculate the mean.

(a) Describe the single transformation that maps triangle A onto triangle B.
\qquad
\qquad
(b) Describe the single transformation that maps triangle A onto triangle C.
\qquad
\qquad
(c) Reflect triangle \boldsymbol{B} in the line $y=1$. Label the image D.
(d) Enlarge triangle \boldsymbol{B} scale factor 2, centre $(-6,-6)$. Label the image E.

A, B, C and D lie on a circle, centre O.
$C O D T$ is a straight line.
$A T$ is a tangent to the circle at A.
Angle $D A T=x^{\circ}$.
(a) Complete the statement.

Angle $C A D=90^{\circ}$ because
(b) Find, in terms of x,
(i) angle $A C D$

Angle $A C D=$
(ii) angle $A O D$

Angle $A O D=$
(iii) angle $A O C$

Angle $A O C=$
(iv) angle $A D O$

Angle $A D O=$
(v) angle $A B C$.

Angle $A B C=$
(c) Given that angle $D T A=y^{\circ}$, find y in terms of x.

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

4 The heights, $x \mathrm{~cm}$, of 500 students in a school are shown in the table.

Height (x)	Frequency
$150<x \leqslant 155$	24
$155<x \leqslant 160$	42
$160<x \leqslant 165$	84
$165<x \leqslant 170$	106
$170<x \leqslant 175$	112
$175<x \leqslant 180$	87
$180<x \leqslant 185$	45

(a) Calculate an estimate of the mean height.
cm [2]
(b) Complete the cumulative frequency table.

Height (x)	Cumulative frequency
$x \leqslant 155$	24
$x \leqslant 160$	
$x \leqslant 165$	
$x \leqslant 170$	
$x \leqslant 175$	
$x \leqslant 180$	
$x \leqslant 185$	500

(c) On the grid below, draw a cumulative frequency curve.

(d) Use your graph in part (c) to find an estimate for
(i) the upper quartile
(ii) the percentage of students who are less than 162 cm in height.

5 (a) $X=3 A+5 B$
Work out the value of B when $X=48$ and $A=4$.

$$
B=
$$

(b) Solve $6(1-2 x)=2+4(x-1)$.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

(c) Solve $\frac{3 x-2}{5}=\frac{3+2 x}{4}-2$.

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

(d) Solve $4 \log 2-2 \log x+\log 4=2$.

You must show your working.

$$
\begin{equation*}
x= \tag{4}
\end{equation*}
$$

(e) Solve $x=16-6 x^{2}$.

Give your answers correct to 2 decimal places.

$$
\mathrm{f}(x)=2-\frac{x^{2}}{x^{2}-x-2}
$$

(a) On the diagram, sketch the graph of $y=\mathrm{f}(x)$ for values of x between -5 and 5 .
(b) Write down the equations of the two vertical asymptotes.
\qquad
(c) Write down the coordinates of the local minimum point.
\qquad ., .
(d) On the diagram, sketch the graph of $y=\mathrm{g}(x)$, where

$$
\begin{equation*}
\mathrm{g}(x)=3-x \quad \text { for }-2 \leqslant x \leqslant 5 . \tag{1}
\end{equation*}
$$

(e) (i) Solve the equation $\mathrm{f}(x)=\mathrm{g}(x)$.
(ii) Solve the inequality $\mathrm{f}(x)>\mathrm{g}(x)$.
\qquad
$7 y$ varies inversely as the cube root of x. $y=10$ when $x=8$.
(a) Find y in terms of x.

$$
y=
$$

(b) Find the value of x when $y=8$.

$$
x=
$$

(c) w varies as the square of y.
$w=18$ when $y=3$.
Find w in terms of x.
Give your answer in the form $w=p x^{q}$, where p and q are constants.

$$
w=.
$$

The diagram shows four points A, B, C and D on level ground.
B is due north of A and C is due east of A
(a) Calculate $A B$.
$A B=$
km [3]
(b) Calculate the obtuse angle $A C D$.
\qquad
Angle $A C D=$
(c) Find the bearing of
(i) D from A
(ii) A from D.
(d) Calculate the area of the quadrilateral $A B C D$.

9 Henryk invests $\$ 5000$ in Bank A and $\$ 5000$ in Bank B.
(a) Bank A pays compound interest at a rate of 3.5% each year.
(i) Find the total amount Henryk has in Bank A at the end of 4 years.
\$
(ii) Calculate the number of complete years it takes for the value of Henryk's investment of $\$ 5000$ in Bank A to be first greater than $\$ 8000$.
(b) Bank B pays simple interest at a rate of 4% each year.
(i) Find the total amount Henryk has in Bank B at the end of 4 years.
\$
\$
(ii) Calculate the number of complete years it takes for the value of Henryk's investment of $\$ 5000$ in Bank B to be $\$ 8000$.
(c) At the end of x complete years, the total amount that Henryk has in Bank A is greater than the total amount he has in Bank B.

Given that $5<x<10$, use a graphical method to find the value of x.

10

A plane is flying in a straight line $A B C$ at a constant height, x metres, above ground level. The point D is on the ground directly below C.

The plane is travelling at a constant speed of $480 \mathrm{~km} / \mathrm{h}$.
The time taken for the plane to travel from A to B is 18 seconds.
(a) Show that, in metres, $A C=\frac{x}{\tan 63}+2400$.
(b) Find the value of x.
$x=$
[5]

11

The diagram shows an equilateral triangle $A B C$ touching a circle, centre O and radius $r \mathrm{~cm}$.
(a) (i) Show that the area of triangle $A B C$ is $\frac{3 \sqrt{3}}{4} r^{2} \mathrm{~cm}^{2}$.
(ii) Find an expression, in terms of π and r, for the exact value of the shaded area.
\qquad cm^{2}
(b)

Another equilateral triangle $D E F$ is touching the same circle.
Find an expression, in terms of π and r, for the exact value of this shaded area.
\qquad
cm^{2}
(c) Find in its simplest form the ratio
perimeter of triangle $A B C$: perimeter of triangle $D E F$.
\qquad :

12 A bag contains x red balls, y blue balls and z green balls.
(a) Paula chooses a ball at random from the bag, notes its colour and replaces it in the bag. She then chooses a ball from the bag a second time and notes its colour.

Giving your answers as unsimplified algebraic fractions, find the probability, in terms of x, y, and z, that the two balls chosen are
(i) both red
(ii) one blue and one green.
(b) All of the green balls are removed from the bag.

Novak now chooses a ball at random from the bag, notes its colour and replaces it in the bag. He then chooses a ball from the bag a second time and notes its colour.
The probability that the two balls chosen are both red is $\frac{49}{400}$.
Find, as a fraction, the value of $\frac{x}{y}$.

$$
\begin{equation*}
\frac{x}{y}= \tag{3}
\end{equation*}
$$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

